Lecture on

Local Search
 Hill Climbing Algorithm

Dr. Partha Pakray

Local Search

Local search methods work on complete state formulations. They keep only a small number of nodes in memory.

Local search is useful for solving optimization problems:
o Often it is easy to find a solution
o But hard to find the best solution
Algorithm goal: find optimal configuration (e.g., TSP),

- Hill climbing
- Gradient descent
- Simulated annealing
- For some problems the state description contains all of the information relevant for a solution. Path to the solution is unimportant.
- Examples:
o map coloring
o 8 -queens
o cryptarithmetic

Block Worlds Domain

Rule: Heuristic Function

$\mathrm{h} 1(\mathrm{n})=$ add 1 if the block is on the correct location subtract 1 if the block is on the incorrect location

Rule

h2(n) = add 1 for every block in the correct structure that the block in sitting on subtract 1 for every block in the incorrect structure

Final Solution

Local Maxima

Hill Climbing (Cont...)

Local maxima

Once the top of a hill is reached the algorithm will halt since every possible step leads down.

Plateaux

If the landscape is flat, meaning many states have the same goodness, algorithm degenerates to a random walk.

Ridges

If the landscape contains ridges, local improvements may follow a zigzag path up the ridge, slowing down the search.

Surface

Surface h1: Local Maxima

Surface
h2: Global Maxima

